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Abstract

This paper investigates the large time (final state flow) solutions for unsteady mixed convection boundary layer flow near a stagnation
point on a vertical surface embedded in a Darcian fluid-saturated porous medium. Through numerical computations Nazar et al. [R.
Nazar, N. Amin, I. Pop, Unsteady mixed convection boundary layer flow near the stagnation point on a vertical surface in a porous
medium, Int. J. Heat Mass Transfer 47 (2004) 2681–2688] concluded that for values of the mixed convection parameter k > �1, the gov-
erning boundary value problem (BVP) had a unique solution. If kc � �1.4175 < k 6 �1 two solutions were reported, and if k < kc then
no solutions were found. The purpose of this note is to provide further mathematical and numerical analysis of this problem. We prove
existence of a solution to the governing BVP for all k > �1. We also present numerical evidence that a second solution exists for k > �1,
thus giving dual solutions for all k > kc. It is also proven that if k < �2.9136 no solution to the BVP exists. Finally, a stability analysis is
performed to show that solutions on the upper branch are linearly stable while those on the lower branch are linearly unstable.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Convective heat transfer in fluid-saturated porous media
has important applications in both technology and geo-
thermal energy recovery. Applications include, but are
not limited to, oil recovery, food processing, building insu-
lation, and a better understanding of transport processes
around deep geological repositories for the disposal of
high-level nuclear waste. In parallel with these technologi-
cal applications, authors have investigated the nature of
solution structure from a fundamental point of view in ide-
alized settings. Both types of studies have been reviewed by
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Ingham and Pop [1], Nield and Bejan [2], Vafai [3], Pop and
Ingham [4], and Bejan and Kraus [5].

We have read with interest the fundamental paper,
recently published in this journal, by Nazar et al. [6] on
unsteady mixed convection stagnation point flow on a ver-
tical surface in a fluid-saturated porous medium. The main
concern of their work centered on the time-dependent
behavior in the neighborhood of the stagnation point on
a vertical wall. However, we were attracted by the steady
flow results calculated using the Keller-box method and
displayed in their Fig. 2. This figure exhibits the variation
of the shear stress parameter G00(0) as a function of the
mixed convection parameter k and reveals dual solutions
in the parameter range kc < k < �1, where kc = �1.417. A
primary thrust of the present investigation is to prove exis-
tence of these solutions.

A secondary interest in their work concerns the end
point G* to which the lower branch of the parametric curve
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Fig. 1. Schematic for porous media stagnation flow on a vertical wall.
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apparently asymptotes: G00(0)! G* as k!�1, ‘‘where the
exact value of G* cannot be determined’’ [6]. Our experi-
ence with boundary-layer problems of this type generally
reveals a focal point located at the origin in G00(0) � k
space; see for instance, Riley and Weidman [7] and Weid-
man et al. [8] for Newtonian boundary layer examples.
Our integrations, using a standard shooting technique,
show that the lower branch does not terminate at
k = �1, but continues indefinitely to large values of
k > 0. A final thrust of the present work is to investigate
the stability of the dual solutions to ascertain whether
one or both are to be expected in practice.

The outline is as follows: The steady and unsteady (dif-
ferent than in [6]) equations governing this mixed convec-
tion porous medium flow are derived in Section 2.
Existence of a solution for k > �1 is proven in Section 3
and qualitative properties of that solution are given in Sec-
tion 4. Evidence for a second nonmonotonic solution for
k > �1 is found numerically and reported in Section 5
and a nonexistence result for k < �2.9136 is proven in Sec-
tion 6. The paper is concluded in Section 7 with an analysis
of the stability of the dual solutions.

2. Unsteady porous media equations

The equations of fundamental interest are the steady
porous media equations for mixed convection boundary
layer flow near a stagnation point on a vertical imperme-
able surface. We will be further concerned with the stability
of the dual steady solutions. This requires the analysis of
an unsteady equation different from that reported by Nazar
et al. [6]. The derivation of both the steady and unsteady
equations used in this study are presented here for future
reference.

The mixed convection porous medium problem in [6]
takes the form

ou
ox
þ ov

oy
¼ 0 ð2:1Þ

uðx; yÞ ¼ U e

L
xþ gKb

m
ðT � T1Þ ð2:2Þ

r
oT
ot
þ u

oT
ox
þ v

oT
oy
¼ am

o2T
oy2

; ð2:3Þ

where x, y are downstream and plate normal coordinates
with respective velocity components u, v, Ue/L is the strain
rate of the stagnation flow, T is temperature, t is time and
g, K, b, m, r and am are constants. See Fig. 1.

In the present analysis there is no need to follow Wil-
liams and Rhyne [9] who found a similarity variable involv-
ing both y and t. Instead we only require the simpler
formulation

u ¼ U e

L
xf 0ðg; sÞ; v ¼ � U eam

L

� �1=2

f ðg; sÞ;

T ¼ T1 þ
sT 0

L
x hðg; sÞ ð2:4Þ
g ¼ U e

Lam

� �1=2

y; s ¼ U e

rL
t ð2:5Þ

to obtain

hs þ f 0h� f h0 ¼ h00 ð2:6Þ
f 0 ¼ 1þ kh; ð2:7Þ

where k = sgKbT0/mUe is the mixed convection parameter
relating buoyancy forces to the strength of the stagnation
flow. Primes denote differentiation with respect to g and
the subscript denotes differentiation with respect to s.

Elimination of h gives the partial differential equation
governing f(s,g), viz.,

f 000 þ ff 00 � f 02 þ f 0 � f 0s ¼ 0: ð2:8Þ
Analysis of the existence and nonexistence of solutions of
the steady flow problem is taken up in Sections 3–6 and
a stability analysis utilizing the unsteady equation is pre-
sented in Sections 7.
3. Existence of a solution for k > �1

Let f = F(g) be the solution to the steady flow problem
with parameter k. Then the steady BVP is given by

F 000 þ FF 00 þ F 0 � F 02 ¼ 0 ð3:1Þ
subject to

F ð0Þ ¼ 0; F 0ð0Þ ¼ 1þ k; F 0ð1Þ ¼ 1: ð3:2; 3:3; 3:4Þ

Theorem 1. For any k > �1 there exists a solution to the
BVP (3.1–3.4).

To study existence of a solution to the BVP (3.1–3.4) we
will consider a related initial value problem (IVP); (3.1–3.3)
along with

F 00ð0Þ ¼ a; ð3:5Þ
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where a is a free parameter. We will denote the solution of
this IVP by F(g;a). Occasionally the dependence on g or a
or both will be dropped for notational convenience. We
will use a topological shooting argument to show that a
can be chosen so that the solution of the IVP exists for
all g > 0 and also satisfies (3.4), giving a solution to the
BVP. This argument will involve two cases; k > 0 and
�1 < k < 0. (If k = 0, then a trivial solution to the BVP is
given by F 0(g) � 1. Also, as the two cases are similar only
the case k > 0 is presented in detail.)

The existence proof for k > 0 will involve the following
subsets of (�1,0):

A ¼ fa < 0jF 00ðg; aÞ ¼ 0 strictly before F 0ðg; aÞ ¼ 1g
and

B ¼ fa < 0jF 0ðg; aÞ ¼ 1 strictly before F 00ðg; aÞ ¼ 0g:
The next two lemmas will show that these two sets are non-
empty and open.

Lemma 1. The set A is non-empty and open.

Proof. We will show that for all a < 0, jaj sufficiently small,
a 2A. Consider a = 0. Since k > 0, from (3.1) we have that
F 000(0;0) = k(k + 1) > 0. Thus, from F 0(0;0) = 1 + k,
F 00(0;0) = 0 and F 000(0; 0) > 0 we can conclude that there
exists an e > 0 such that F 0(g; 0) > 1 and F00(g; 0) > 0 for
all g 2 (0, e]. By continuity of the solutions of the IVP in
its initial conditions on bounded intervals, we can choose
a < 0, jaj sufficiently small so that F 0(g;a) > 1 for all
g 2 [0, e] and F 00(e;a) > 0. But F 00(0; a) = a < 0. Thus there
exists a first g0 2 (0, e) such that F00(g0;a) = 0 with
F 0(g;a) > 1 for all g 2 [0,g0]. Thus A is non-empty.

To show that A is open, consider �a 2A. We will show
that all a sufficiently close to �a are also in A. At g0,
F 00ðg0; �aÞ ¼ 0 and for all g 2 [0,g0] we have F 0ðg; �aÞ > 1.
Evaluating (3.1) at g0 implies that

F 000ðg0; �aÞ ¼ F 0ðg0; �aÞðF 0ðg0; �aÞ � 1Þ 6¼ 0:

Thus, by continuity of the solutions of the IVP in its initial
conditions, for a sufficiently close to �a, F00(g;a) will also
have a root near g0 with F 0(g;a) > 1 for all g up to this root.
Thus a 2A and A is open. h

Lemma 2. The set B is non-empty and open.

Proof. First note that integrating (3.1) from 0 to g gives:

F 00ðgÞ ¼ a� F ðgÞ þ
Z g

0

F 0ðtÞ2 dt �
Z g

0

F ðtÞF 00ðtÞdt:

Integrating the last term by parts results in

F 00ðgÞ ¼ a� F ðgÞðF 0ðgÞ þ 1Þ þ 2

Z g

0

F 0ðtÞ2dt: ð3:6Þ

We will show that for a < 0, jaj sufficiently large, then
a 2 B. We claim that for such a, F 0 = 1 in the interval
[0,1] strictly before F00 = 0. Suppose that the assertion is
false. Then one of the following must occur: (i) F00 = 0 at
some first point in [0, 1] with F 0 > 1, (ii) F00 < 0 and F 0 > 1
for all g 2 [0, 1], or (iii) F00 = 0 and F 0 = 1 simultaneously.
We eliminate each of these in turn. To begin with (i), sup-
pose that there exists a first g1 2 [0, 1] with

F 00ðg1Þ ¼ 0 ð3:7Þ
with 1 < F 0(g) 6 k + 1 for g 2 [0,g1]. Integrating this
inequality from 0 to g gives g 6 F < (k + 1)g. Using these
bounds on F and F 0 in (3.6) we conclude that

F 00ðgÞ 6 aþ 2ðkþ 1Þ2 8g 2 ½0; g1�:
Thus if we choose a < �2(k + 1)2 then F00(g1) < 0 con-
tradicting (3.7). A similar argument shows that if
a < �2(k + 1)2 � k then we cannot have (ii) F00 < 0 and
F 0 > 1 on all of [0, 1] (i.e., F 0(1) will be less than 1). This
leaves only the case (iii) F 0 = 1 and F00 = 0 simultaneously;
however, substituting this information into (3.1) gives
F000 = 0 implying that F 0(g) � 1, contradicting the basic
existence and uniqueness theorem for initial value prob-
lems, as F 0(0) = k + 1 5 1. Thus if a < �2(k + 1)2 � k then
we must have F 0 = 1 strictly before F00 = 0 and therefore
a 2 B. An argument similar to that of Lemma 1 shows that
B is also open. h

Thus by Lemmas 1 and 2, the sets A and B are non-
empty and open. They are also obviously disjoint.
But the interval (�1, 0) is connected and thus
A [B 6¼ ð�1; 0Þ. Therefore, there exists some a* such
that a� 62A and a� 62 B. (i.e. we cannot have F00 = 0 strictly
before F 0 = 1 and we cannot have F 0 = 1 strictly before
F00 = 0.) As previously observed, we cannot have F 0 = 1
and F00 = 0 simultaneously, thus the only other possibility
is F 0(g;a*) > 1 and F00(g;a*) < 0 for all g > 0. From (3.1)
we see that we must then have F 0(1;a*) = 1 giving the exis-
tence of a solution to the BVP for k > 0. The argument for
�1 < k < 0 is similar and the theorem is proved.

4. Qualitative properties of the solution

The analysis of the previous section showed that for
k > 0 a solution exists with the property F00(g) < 0 for all
g > 0. Thus F 0(g) is monotonic and we can further conclude
that 1 < F 0(g) < k + 1 and F(g) > 0 for all g > 0. Using an
argument given by McLeod and Rajagopal [10] we can
conclude that for k > 0 there cannot be two solutions with
the property that F 0(g) is monotonic.

Suppose for contradiction that there were two mono-
tonic solutions, F 01 and F 02. If we let / = F1 � F2 then /
satisfies

/000 þ F 2/
00 � ðF 01 þ F 02 � 1Þ/0 þ F 001/ ¼ 0 ð4:1Þ

subject to

/ð0Þ ¼ 0; /0ð0Þ ¼ 0; /0ð1Þ ¼ 0: ð4:2Þ

Suppose without loss of generality that /00(0) > 0. Then ini-
tially / > 0, / 0 > 0, /00 > 0, and so long as these inequalities
are maintained,
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is increasing since F 01 þ F 02 � 1 > 0 and F 001 < 0. Hence /,
/ 0, /00 never vanish, which contradicts / 0(1) = 0.
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5. A second nonmonotonic solution for k > �1

The result of the previous section indicates that for k > 0
at least, if a second solution exists, it cannot be monotonic.
In order to investigate the possible existence of such solu-
tions a numerical shooting method was applied to the
BVP using the fourth order Runge–Kutta scheme.

It was found that two solutions exist for all
k > kc � �1.4175 with the two solution branches coalescing
at kc. This is in contrast with Nazar et al. [6] who report
two solutions only for kc < k 6 �1. Fig. 2 plots F00(0) as a
function of k, (cf. figure 2 in [6]). We denote the upper
branch by F 001ð0Þ and the lower branch by F 002ð0Þ. For the
upper solution branch, F 01ðgÞ is always monotonic; decreas-
ing for k > 0 and increasing for kc < k < 0. On the lower
solution branch, F 02ðgÞ is monotonic if kc < k < � �1.3785
and nonmonotonic if k > � �1.3785. The functions F 01ðgÞ
and F 02ðgÞ are plotted for various values of k in Fig. 3.

As can be seen from (3.1), F 0 can only have a minimum
if F 0 < 0 or F 0 > 1. Conversely, F 0 can only have a maxi-
mum in the range 0 < F 0 < 1. Thus a solution to the BVP
cannot have an extremum above F 0 = 1 and any nonmon-
otonic solution must have at least one negative minimum.
From our numerical investigation it appears that all non-
monotonic solutions have precisely one extremum, a mini-
mum below F 0 = 0.
6
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F′
6. Nonexistence results

Theorem 2. If k < �2.9136, then no solution to the BVP
exists.
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Fig. 2. Reduced skin friction F00(0) as a function of k.
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Fig. 3. Self-similar velocity profiles F 01ðgÞ and F 02ðgÞ for selected values of
k: (a) k = �1.4 for which F 001ð0Þ ¼ 0:36073 and F 002ð0Þ ¼ 0:043513, (b)
k = �.5 for which F 001ð0Þ ¼ 0:51435 and F 002ð0Þ ¼ �0:39553, and (c) k = 10
for which F 001ð0Þ ¼ �34:081085 and F 002ð0Þ ¼ �36:455849.
Proof. For the sake of contradiction suppose a solution
exists. Then since F(0) = 0 and F 0(0) = k + 1 < 0, we have
F(g) < 0 initially. But since F 0 ! 1 we must ultimately have
F!1. Thus there exists a first g2 such that F(g2) = 0.
Obviously F 0(g2) P 0, but also notice that we must have
F 0(g2) < 1, since F 0 cannot have a maximum at or above
1. Multiplying (3.1) by F00 and integrating from 0 to g2 gives
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Fig. 4. Plot of lowest eigenvalues c1 as a function of k, showing positive
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F 00ðg2Þ
2 ¼ a2 � 2

Z g2

0

F ðtÞF 00ðtÞ2dt þ 1

3
F 0ðg2Þ

2ð2F 0ðg2Þ � 3Þ

þ 1

3
ðkþ 1Þ2ð1� 2kÞ:

Using the facts that F(g) 6 0 on [0,g2] and 0 6 F 0(g2) < 1
we obtain the bound

F 00ðg2Þ
2
> � 1

3
k2ð2kþ 3Þ

from which we can conclude that either

F 00ðg2Þ >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1

3
k2ð2kþ 3Þ

r
ð6:1Þ

or

F 00ðg2Þ < �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1

3
k2ð2kþ 3Þ

r
: ð6:2Þ

We will show that both of these possibilities lead to con-
tradictions. Beginning with (6.2), if F00(g2) < 0, then inte-
grating (3.1) from 0 to g2 leads us to conclude that

a ¼ F 00ðg2Þ � 2

Z g2

0

F 0ðtÞ2dt < 0:

Thus since F00(0) = a < 0, F 0 is initially decreasing and must
therefore have a first minimum, at some g* < g2, with
F(g*) < 0 and F 0(g*) < �1. This last is true since
F 0(0) = k + 1 < �1 by our assumption on k and F 0 is
decreasing until its minimum at g*. Integrating (3.1) from
g* to g2 we conclude that

F 00ðg2Þ ¼ F ðg�ÞðF 0ðg�Þ þ 1Þ þ 2

Z g2

g�
F 0ðtÞ2dt > 0

contradicting (6.2).
So next assume that (6.1) holds and thus F00(g2) > 0.

Then we claim that F00 > 0 on the interval ½g2; g2 þ 1=
ffiffiffi
2
p
�.

For if F00 had a first root in this interval, at g3 say, then
integrating (3.1) from g2 to g3 gives

F ðg3ÞðF 0ðg3Þ þ 1Þ ¼ F 00ðg2Þ þ 2

Z g3

g2

F 0ðtÞ2dt: ð6:3Þ

On [g2,g3], 0 6 F 0 < 1 and on integration we conclude that
0 6 F < g3 � g2. Using this along with (6.1) in (6.3) results
in

g3 � g2 >
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1

3
k2ð2kþ 3Þ

r

which is greater than 1=
ffiffiffi
2
p

if k < � �2.14935. But by
assumption k < �2.9136 and so we can conclude that
F00(g) > 0 on ½g2; g2 þ 1=

ffiffiffi
2
p
�.

Finally integrating (3.1) from g2 to g 2 ½g2; g2 þ 1=
ffiffiffi
2
p
�

we obtain

F 00ðgÞ ¼ F 00ðg2Þ � F ðgÞ F 0ðgÞ þ 1ð Þ þ 2

Z g

g2

F 0ðtÞ2dt:
Using the bounds 0 6 F 0 < 1, F P 0 and (6.1) we obtain

F 00ðgÞ >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1

3
k2ð2kþ 3Þ

r
�

ffiffiffi
2
p

; 8g 2 ½g2; g2 þ 1=
ffiffiffi
2
p
�:

ð6:4Þ
If the right hand side of (6.4) is greater than

ffiffiffi
2
p

, then on
integration we will have F 0ðg2 þ 1=

ffiffiffi
2
p
Þ > 1 and therefore

F 0 cannot be a solution to the BVP. The right hand side
of (6.4) will be greater than

ffiffiffi
2
p

when k is less than the root
of �2k3 � 3k2 � 24 = 0, which occurs at k � �2.9136.
Thus if k < �2.9136, (6.1) also leads to a contradiction
and thus no solution exists and the theorem is proved. h
7. Stability analysis

Our numerical results reveal that the lower branch solu-
tion continues well beyond the point k = �1 reported in [6].
It is of interest to ascertain the stability of these dual solu-
tions which apparently exist for all k > �1.4175. To this
end we return to the unsteady form of the problem derived
in Section 2 and test the stability of the steady solutions.
Following Merkin [11]

f ðg; sÞ ¼ F ðgÞ þ e�csgðgÞ ð7:1Þ
where g and all its derivatives are small compared to the
steady solution F and its derivatives. Inserting the posited
solution form (7.1) into (2.8) and linearizing yields the
equation

g000 þ Fg00 þ ð1þ c� 2F 0Þg0 þ F 00g ¼ 0 ð7:2Þ
governing eigenfunctions g(g) and corresponding eigen-
values c. Since Eq. (7.2) satisfies homogeneous boundary
and far-field conditions

gð0Þ ¼ 0; g0ð0Þ ¼ 0; g0ð1Þ ¼ 0 ð7:3Þ
one may set g00(0) = 1 without loss of generality. At each
value of k, stability is determined by the sign of the smallest
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eigenvalue c1, with c1 > 0 representing a stable solution and
c1 < 0 representing an unstable solution.

A search for the lowest eigenvalues c1 satisfying (7.2)
and (7.3) was carried out and the results are plotted in
Fig. 4. Clearly the upper branch solutions are positive,
the lower branch solutions are negative and c1! 0 as the
turning point kc = �1.417 is approached from the right.
We conclude that of the dual steady flow solutions, the
upper branch solutions are linearly stable while the those
on the lower branch are linearly unstable.
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